enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.

  4. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    The discriminant of a quadratic form, concretely the class of the determinant of a representing matrix in K / (K ×) 2 (up to non-zero squares) can also be defined, and for a real quadratic form is a cruder invariant than signature, taking values of only "positive, zero, or negative".

  5. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    Given a real matrix M and vector q, the linear complementarity problem LCP(q, M) seeks vectors z and w which satisfy the following constraints: w , z ⩾ 0 , {\displaystyle w,z\geqslant 0,} (that is, each component of these two vectors is non-negative)

  6. Quadratic form (statistics) - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form_(statistics)

    Since the quadratic form is a scalar quantity, = ⁡ (). Next, by the cyclic property of the trace operator, ⁡ [⁡ ()] = ⁡ [⁡ ()]. Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that

  7. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    The above matrix equations explain the behavior of polynomial regression well. However, to physically implement polynomial regression for a set of xy point pairs, more detail is useful. The below matrix equations for polynomial coefficients are expanded from regression theory without derivation and easily implemented. [6] [7] [8]

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  9. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of NNLS. [1]