Search results
Results from the WOW.Com Content Network
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: H = R T M g 0 {\displaystyle H={\frac {RT}{Mg_{0}}}} where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface.
The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3. Values of ρ b of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = h b+1. [2]
The troposphere is the lowest of the four layers and extends from the surface of the Earth to about 11 km (6.8 mi) into the atmosphere, where the tropopause (the boundary between the troposphere stratosphere) is located. The width of the troposphere can vary depending on latitude: for example, the troposphere is thicker in the tropics (about 16 ...
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere, using for calculation the universal gas constant instead of the air specific constant:
The International Civil Aviation Organization (ICAO) published their "ICAO Standard Atmosphere" as Doc 7488-CD in 1993. It has the same model as the ISA, but extends the altitude coverage to 80 kilometers (262,500 feet). [7] The ICAO Standard Atmosphere, like the ISA, does not contain water vapor. Some of the values defined by ICAO are:
Since the atmosphere at a height of approximately 5.5 kilometres (3.4 mi) is mostly divergence-free, the barotropic model best approximates the state of the atmosphere at a geopotential height corresponding to that altitude, which corresponds to the atmosphere's 500 mb (15 inHg) pressure surface.