Search results
Results from the WOW.Com Content Network
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
The image of a function is the image of its entire domain, also known as the range of the function. [3] This last usage should be avoided because the word "range" is also commonly used to mean the codomain of f . {\displaystyle f.}
Formally, a function of n variables is a function whose domain is a set of n-tuples. [note 3] For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of
A function f from X to Y.The blue oval Y is the codomain of f.The yellow oval inside Y is the image of f, and the red oval X is the domain of f.. In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall.
The domain of f is the set of complex numbers such that (). Every rational function can be naturally extended to a function whose domain and range are the whole Riemann sphere (complex projective line). Rational functions are representative examples of meromorphic functions. [6]
In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.