Search results
Results from the WOW.Com Content Network
Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node.
Example of one of two shortest-path trees where the root vertex is the red square vertex. The edges in the tree are indicated with green lines while the two dashed lines are edges in the full graph but not in the tree. The numbers beside the vertices indicate the distance from the root vertex.
When the graph is stored in the form of adjacency list or matrix, priority queue can be used to extract minimum efficiently when implementing Dijkstra's algorithm, although one also needs the ability to alter the priority of a particular vertex in the priority queue efficiently.
The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of C by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is ...
The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...