enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...

  3. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  4. Category:Poisson point processes - Wikipedia

    en.wikipedia.org/wiki/Category:Poisson_point...

    Download as PDF; Printable version; ... Pages in category "Poisson point processes" The following 17 pages are in this category, out of 17 total. ... Mixed Poisson ...

  5. Compound Poisson process - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_process

    A compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution.

  6. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    10.6 Poisson process (events that occur independently with a given rate) ... Figure 2: The probability density function (pdf) of the normal distribution, also called ...

  7. Point process - Wikipedia

    en.wikipedia.org/wiki/Point_process

    A Poisson (counting) process on the line can be characterised by two properties : the number of points (or events) in disjoint intervals are independent and have a Poisson distribution. A Poisson point process can also be defined using these two properties. Namely, we say that a point process is a Poisson point process if the following two ...

  8. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.

  9. Burke's theorem - Wikipedia

    en.wikipedia.org/wiki/Burke's_theorem

    In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ: