enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  3. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  4. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception v2 was released in 2015, in a paper that is more famous for proposing batch normalization. [7] [8] It had 13.6 million parameters.It improves on Inception v1 by adding batch normalization, and removing dropout and local response normalization which they found became unnecessary when batch normalization is used.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Choice of model: This depends on the data representation and the application. Model parameters include the number, type, and connectedness of network layers, as well as the size of each and the connection type (full, pooling, etc. ). Overly complex models learn slowly. Learning algorithm: Numerous trade-offs exist between learning algorithms.

  6. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    While most approaches solely focus on finding architecture with maximal predictive performance, for most practical applications other objectives are relevant, such as memory consumption, model size or inference time (i.e., the time required to obtain a prediction). Because of that, researchers created a multi-objective search. [16] [20]

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations: := = = (). The step size is denoted by η {\displaystyle \eta } (sometimes called the learning rate in machine learning) and here " := {\displaystyle :=} " denotes the update of a variable in the algorithm.

  8. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  9. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. [1]