Search results
Results from the WOW.Com Content Network
Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost ...
Mars's average distance from the Sun is roughly 230 million km (143 million mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. [185] A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours. [2]
For purposes of enumerating Mars years and facilitating data comparisons, a system increasingly used in the scientific literature, particularly studies of Martian climate, enumerates years relative to the northern spring equinox (L s 0) that occurred on April 11, 1955, labeling that date the start of Mars Year 1 (MY1).
The closest encounter to the Sun so far predicted is the low-mass orange dwarf star Gliese 710 / HIP 89825 with roughly 60% the mass of the Sun. [4] It is currently predicted to pass 0.1696 ± 0.0065 ly (10 635 ± 500 au) from the Sun in 1.290 ± 0.04 million years from the present, close enough to significantly disturb the Solar System's Oort ...
A sol is the apparent interval between two successive returns of the Sun to the same meridian (sundial time) as seen by an observer on Mars. It is one of several units for timekeeping on Mars. A sol is slightly longer than an Earth day. It is approximately 24 hours, 39 minutes, 35 seconds long.
The planetary hours are an ancient system in which one of the seven classical planets is given rulership over each day and various parts of the day. Developed in Hellenistic astrology, it has possible roots in older Babylonian astrology, and it is the origin of the names of the days of the week as used in English and numerous other languages.
The maps below were produced by the Mars Global Surveyor ' s Mars Orbiter Laser Altimeter; redder colors indicate higher elevations.The maps of the equatorial quadrangles use a Mercator projection, while those of the mid-latitude quadrangles use a Lambert conformal conic projection, and the maps of the polar quadrangles use a polar stereographic projection.
Given the different Sun incidence in different positions in the orbit, it is necessary to define a standard point of the orbit of the planet, to define the planet position in the orbit at each moment of the year w.r.t such point; this point is called with several names: vernal equinox, spring equinox, March equinox, all equivalent, and named considering northern hemisphere seasons.