Search results
Results from the WOW.Com Content Network
Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics.Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, or other computational methods.
Abū Kāmil Shujā ibn Aslam (Egypt, 10th century) in particular was the first to accept irrational numbers (often in the form of a square root, cube root or fourth root) as solutions to quadratic equations or as coefficients in an equation. [30] The 9th century Indian mathematician Sridhara wrote down rules for solving quadratic equations. [31]
The random walk model of consumption was introduced by economist Robert Hall. [1] This model uses the Euler numerical method to model consumption. He created his consumption theory in response to the Lucas critique. Using Euler equations to model the random walk of consumption has become the dominant approach to modeling consumption. [2]
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).
Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. [1] More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference."
The quadratic programming problem with n variables and m constraints can be formulated as follows. [2] Given: a real-valued, n-dimensional vector c, an n×n-dimensional real symmetric matrix Q, an m×n-dimensional real matrix A, and; an m-dimensional real vector b, the objective of quadratic programming is to find an n-dimensional vector x ...
Chapter 9 compares the neoclassical school and the Austrian School, in particular in relation to falsifiability. Lange, Oskar (1945), "The Scope and Method of Economics", Review of Economic Studies, 13 (1), The Review of Economic Studies Ltd.: 19– 32, doi:10.2307/2296113, JSTOR 2296113, S2CID 4140287.