enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    As another example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any g divides for instance 2g, which is distinct from it, so g is not

  4. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)

  5. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...

  6. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...

  7. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    A nontrivial poset satisfying the descending chain condition is said to have deviation 0. Then, inductively, a poset is said to have deviation at most α (for an ordinal α) if for every descending chain of elements a 0 > a 1 >... all but a finite number of the posets of elements between a n and a n+1 have deviation less than α. The deviation ...

  8. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  9. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    Every cofinal subset of a partially ordered set with maximal elements must contain all maximal elements. A subset L {\displaystyle L} of a partially ordered set P {\displaystyle P} is said to be a lower set of P {\displaystyle P} if it is downward closed: if y ∈ L {\displaystyle y\in L} and x ≤ y {\displaystyle x\leq y} then x ∈ L ...