Search results
Results from the WOW.Com Content Network
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
As of Perl 5.8, merge sort is its default sorting algorithm (it was quicksort in previous versions of Perl). [28] In Java, the Arrays.sort() methods use merge sort or a tuned quicksort depending on the datatypes and for implementation efficiency switch to insertion sort when fewer than seven array elements are being sorted. [29]
The next pass, 3-sorting, performs insertion sort on the three subarrays (a 1, a 4, a 7, a 10), (a 2, a 5, a 8, a 11), (a 3, a 6, a 9, a 12). The last pass, 1-sorting, is an ordinary insertion sort of the entire array (a 1,..., a 12). As the example illustrates, the subarrays that Shellsort operates on are initially short; later they are longer ...
The average case is also quadratic, [4] which makes insertion sort impractical for sorting large arrays. However, insertion sort is one of the fastest algorithms for sorting very small arrays, even faster than quicksort; indeed, good quicksort implementations use insertion sort for arrays smaller than a certain threshold, also when arising as ...
A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...
The shuffle sort [6] is a variant of bucket sort that begins by removing the first 1/8 of the n items to be sorted, sorts them recursively, and puts them in an array. This creates n/8 "buckets" to which the remaining 7/8 of the items are distributed. Each "bucket" is then sorted, and the "buckets" are concatenated into a sorted array.