Search results
Results from the WOW.Com Content Network
Comparison between Natural Circulation and Forced Circulation. A forced circulation boiler is a boiler where a pump is used to circulate water inside the boiler. This differs from a natural circulation boiler which relies on current density to circulate water inside the boiler.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
[4] [5] [6] The CALPHAD approach is based on the fact that a phase diagram is a manifestation of the equilibrium thermodynamic properties of the system, which are the sum of the properties of the individual phases. [7] It is thus possible to calculate a phase diagram by first assessing the thermodynamic properties of all the phases in a system.
The forced recirculation head from the recirculation pumps is very useful in controlling power, however, and allows achieving higher power levels that would not otherwise be possible. The thermal power level is easily varied by simply increasing or decreasing the forced recirculation flow through the recirculation pumps.
Variable speed pumps were replaced with two-speed pumps (each rated at 35,400 US gallons per minute (2.23 m 3 /s) for a discharge pressure head of 865 feet (264 m)), and a flow control valve (adjustable from 22% open to 100% open with a linear flow response) was added to each loop for use in regulating recirculation flow (capable of regulating ...
Diagram showing the setup of a continuous stirred-tank reactor. The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering. A CSTR often refers to a ...
The upper diagram shows zero circulation and zero lift. It implies high-speed vortex flow at the trailing edge which is known to be inaccurate in a model of the steady state. The lower diagram shows the Kutta condition which implies finite circulation, finite lift, and no vortex flow at the trailing edge.
Such diagrams are available in the speciality literature. [1] [2] [3] The same information can be depicted in a normal orthogonal diagram, showing only two substances, implicitly using the feature that the sum of all three components is 100 percent. The diagrams below only concerns one fuel; the diagrams can be generalized to mixtures of fuels.