Search results
Results from the WOW.Com Content Network
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure , which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge .
The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of 75 millimetres (3.0 in) per year [17] and the Pacific Plate moving 52–69 millimetres (2.0–2.7 in) per year. At the other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate of about 21 millimetres (0.83 in) per year.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved, bivector Angular velocity: ω: The angle incremented in a plane by a segment connecting an object and a reference point per unit time rad/s T −1: bivector Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Capacity of a set, in Euclidean space, the total charge a set can hold while maintaining a given potential energy; Capacity factor, the ratio of the actual output of a power plant to its theoretical potential output; Storage capacity (energy), the amount of energy that the storage system of a power plant can hold
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The first of Newton's laws of motion states that an object's inertia keeps it in motion; since the object in the air has a velocity, it will tend to keep moving in that direction. A varying angular speed for an object moving in a circular path can also be achieved if the rotating body does not have a homogeneous mass distribution. [2]