Search results
Results from the WOW.Com Content Network
a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
function Build-Path(s, μ, B) is π ← Find-Shortest-Path(s, μ) (Recursively compute the path to the relay node) remove the last node from π return π B (Append the backward search stack) function Depth-Limited-Search-Forward(u, Δ, F) is if Δ = 0 then F ← F {u} (Mark the node) return foreach child of u do Depth-Limited-Search-Forward ...
Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where = for all x. [12] [13] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...
Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to ...
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
Such methods were then explored and successfully applied to heuristic search in the field of automated theorem proving by W. Ertel, J. Schumann and C. Suttner in 1989, [8] [9] [10] thus improving the exponential search times of uninformed search algorithms such as e.g. breadth-first search, depth-first search or iterative deepening.