Search results
Results from the WOW.Com Content Network
A reference value above which visual acuity is considered normal is called 6/6 vision, the USC equivalent of which is 20/20 vision: At 6 metres or 20 feet, a human eye with that performance is able to separate contours that are approximately 1.75 mm apart. [9] Vision of 6/12 corresponds to lower performance, while vision of 6/3 to better ...
A person taking the test covers one eye from 6 metres or 20 feet away, and reads aloud the letters of each row, beginning at the top. The smallest row that can be read accurately indicates the visual acuity in that specific eye. The symbols on an acuity chart are formally known as "optotypes". Variation of Snellen chart with another letter ...
The human eye is a sensory organ in the visual system that reacts to visible light allowing eyesight. Other functions include maintaining the circadian rhythm, and keeping balance. Arizona Eye Model. "A" is accommodation in diopters. The eye can be considered as a living optical device.
Near visual acuity or near vision is a measure of how clearly a person can see nearby small objects or letters.Visual acuity in general usually refers clarity of distance vision, and is measured using eye charts like Snellen chart, LogMAR chart etc. Near vision is usually measured and recorded using a printed hand-held card containing different sized paragraphs, words, letters or symbols.
An example of the Landolt C eye chart (also known as the Japanese eye chart). Numerous types of eye charts exist and are used in various situations. For example, the Snellen chart is designed for use at 6 meters or 20 feet, and is thus appropriate for testing distance vision, while the ETDRS chart is designed for use at 4 meters. [16]
Visual perception is the ability to interpret the surrounding environment through photopic vision (daytime vision), color vision, scotopic vision (night vision), and mesopic vision (twilight vision), using light in the visible spectrum reflected by objects in the environment.
Eye types can be categorised into "simple eyes", with one concave photoreceptive surface, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. "Simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment.
Changes in the sensitivity of rods and cones in the eye are the major contributors to dark adaptation. Above a certain luminance level (about 0.03 cd/m 2), the cone mechanism is involved in mediating vision; photopic vision. Below this level, the rod mechanism comes into play providing scotopic (night) vision.