Search results
Results from the WOW.Com Content Network
A simple (non-self-intersecting) quadrilateral is a parallelogram if and only if any one of the following statements is true: [2] [3] Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other.
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
A self-intersecting quadrilateral is called variously a cross-quadrilateral, crossed quadrilateral, butterfly quadrilateral or bow-tie quadrilateral. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex , all on the left or all on the right as the figure is traced out) add up to 720°.
The midpoints of the sides of an arbitrary quadrilateral form a parallelogram. If the quadrilateral is convex or concave (not complex), then the area of the parallelogram is half the area of the quadrilateral. If one introduces the concept of oriented areas for n-gons, then this area equality also holds for complex quadrilaterals. [2]
Hutton's definitions in 1795 [4]. The ancient Greek mathematician Euclid defined five types of quadrilateral, of which four had two sets of parallel sides (known in English as square, rectangle, rhombus and rhomboid) and the last did not have two sets of parallel sides – a τραπέζια (trapezia [5] literally 'table', itself from τετράς (tetrás) 'four' + πέζα (péza) 'foot ...
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.