Search results
Results from the WOW.Com Content Network
In 1747, Leonhard Euler completed what is now called the Euclid–Euler theorem, showing that these are the only even perfect numbers. As a result, there is a one-to-one correspondence between Mersenne primes and even perfect numbers, so a list of one can be converted into a list of the other. [1] [5] [6]
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
Notably, absent consensus, please do not add articles about individual perfect numbers themselves (such as 6). Pages in category "Perfect numbers" The following 11 pages are in this category, out of 11 total.
Toggle List of Mersenne primes and perfect numbers subsection. 1.1 Comments by RunningTiger123. 1.2 Accessibility review (MOS:DTAB) 1.3 Image review — Pass.
Mersenne primes M p are closely connected to perfect numbers. In the 4th century BC, Euclid proved that if 2 p − 1 is prime, then 2 p − 1 (2 p − 1) is a perfect number. In the 18th century, Leonhard Euler proved that, conversely, all even perfect numbers have this form. [5] This is known as the Euclid–Euler theorem.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.