Search results
Results from the WOW.Com Content Network
Some of the forces acting on a wing spar are: [2] Upward bending loads resulting from the wing lift force that supports the fuselage in flight. These forces are often offset by carrying fuel in the wings or employing wing-tip-mounted fuel tanks; the Cessna 310 is an example of this design feature.
The position of a swept wing along the fuselage has to be such that the lift from the wing root, well forward of the aircraft center of gravity (c.g.), must be balanced by the wing tip, well aft of the c.g. [68] If the tip stalls first the balance of the aircraft is upset causing dangerous nose pitch up. Swept wings have to incorporate features ...
The slats may extend over the outer third of the wing, or they may cover the entire leading edge. Many early aerodynamicists, including Ludwig Prandtl , believed that slats work by inducing a high energy stream to the flow of the main airfoil , thus re-energizing its boundary layer and delaying stall. [ 1 ]
A vortex is created by passage of an aircraft wing, revealed by smoke. Vortices are one of the many phenomena associated with the study of aerodynamics. Aerodynamics (Ancient Greek: ἀήρ aero (air) + Ancient Greek: δυναμική (dynamics)) is the study of the motion of air, particularly when affected by a solid object, such as an ...
Yawing also increases the speed of the outboard wing whilst slowing down the inboard wing, with corresponding changes in drag causing a (small) opposing yaw moment. N r {\displaystyle N_{r}} opposes the inherent directional stiffness which tends to point the aircraft's nose back into the wind and always matches the sign of the yaw rate input.
Wing loading is a useful measure of the stalling speed of an aircraft. Wings generate lift owing to the motion of air around the wing. Larger wings move more air, so an aircraft with a large wing area relative to its mass (i.e., low wing loading) will have a lower stalling speed.
The word "wing" from the Old Norse vængr [1] for many centuries referred mainly to the foremost limbs of birds (in addition to the architectural aisle). But in recent centuries the word's meaning has extended to include lift producing appendages of insects, bats, pterosaurs, boomerangs, some sail boats and aircraft, or the airfoil on a race car.
The lower/nearer the wing is to the ground, the more pronounced the ground effect becomes. While in the ground effect, the wing requires a lower angle of attack to produce the same amount of lift. In wind tunnel tests, in which the angle of attack and airspeed remain constant, an increase in the lift coefficient ensues, [ 9 ] which accounts for ...