enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.

  4. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    Because if the derivative of a continuous function constantly takes the value zero, then the concerned function is a constant function. This means that this function results in the same function value for each abscissa value ε {\displaystyle \varepsilon } and the associated function graph is therefore a horizontal straight line.

  5. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    where a 1 = 0.0705230784, a 2 = 0.0422820123, a 3 = 0.0092705272, a 4 = 0.0001520143, a 5 = 0.0002765672, a 6 = 0.0000430638 erf ⁡ x ≈ 1 − ( a 1 t + a 2 t 2 + ⋯ + a 5 t 5 ) e − x 2 , t = 1 1 + p x {\displaystyle \operatorname {erf} x\approx 1-\left(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5}\right)e^{-x^{2}},\quad t={\frac {1}{1+px ...

  6. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    For a small angle, H and A are almost the same length, and therefore cos θ is nearly 1. The segment d (in red to the right) is the difference between the lengths of the hypotenuse, H, and the adjacent side, A, and has length , which for small angles is approximately equal to /.

  8. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).

  9. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    A calculation confirms that z(0) = 1, and z is a constant so z = 1 for all x, so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine.