Search results
Results from the WOW.Com Content Network
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. [1] [2] A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress).
Finally there are the processes at the contact interface: compression and adhesion in the direction perpendicular to the interface, and friction and micro-slip in the tangential directions. The last aspect is the primary concern of contact mechanics. It is described in terms of so-called contact conditions. For the direction perpendicular to ...
It can also be formulated as the instantaneous rate of change of the number of rotations, N, with respect to time, t: n=dN/dt (as per International System of Quantities). [4] Similar to ordinary period , the reciprocal of rotational frequency is the rotation period or period of rotation , T = ν −1 = n −1 , with dimension of time (SI unit ...
As an example, an illustration of the classic Hertz contact model is shown in the figure on the right. In such model, the contact is explained by the local deformation of bodies. More contact models can be found in some review scientific works [3] [4] [5] or in the article dedicated to contact mechanics.
The principle of least constraint is one variational formulation of classical mechanics enunciated by Carl Friedrich Gauss in 1829, equivalent to all other formulations of analytical mechanics. Intuitively, it says that the acceleration of a constrained physical system will be as similar as possible to that of the corresponding unconstrained ...
Phone support is available for account management and password reset help, Mon-Fri: 8am-12am ET; Sat: 8am-10pm ET. For additional hours of operation for different services visit our support options page for contact info.
Restore power, speed and stability with over 200 critical tests and 50 tools using the go-to solution for ultimate PC performance and trouble-free computing.
Bearing pressure is a particular case of contact mechanics often occurring in cases where a convex surface (male cylinder or sphere) contacts a concave surface (female cylinder or sphere: bore or hemispherical cup). Excessive contact pressure can lead to a typical bearing failure such as a plastic deformation similar to peening.