enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.

  3. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    An estimate of the standard deviation for N > 100 data taken to be approximately normal follows from the heuristic that 95% of the area under the normal curve lies roughly two standard deviations to either side of the mean, so that, with 95% probability the total range of values R represents four standard deviations so that s ≈ R/4.

  4. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.

  5. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A conventional choice is to add noise with a standard deviation of / for a sample size n; this noise is often drawn from a Student-t distribution with n-1 degrees of freedom. [47] This results in an approximately-unbiased estimator for the variance of the sample mean. [48]

  7. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Gurland and Tripathi (1971) provide a correction and equation for this effect. [4] ... See also unbiased estimation of standard deviation for more discussion. See also

  8. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n . From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 / n .

  9. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The unbiased estimation of standard deviation is a technically involved problem, though for the normal distribution using the term n − 1.5 yields an almost unbiased estimator. The unbiased sample variance is a U-statistic for the function f ( y 1 , y 2 ) = ( y 1 − y 2 ) 2 /2 , meaning that it is obtained by averaging a 2-sample statistic ...