Search results
Results from the WOW.Com Content Network
Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, the observation that only matter and not antimatter (antibaryons) is detected in universe other than in cosmic ray collisions.
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons should have cancelled with antiprotons, electrons with positrons, neutrons with antineutrons, and so on. This would have resulted in a sea of radiation in the universe with ...
In the antimatter universe, Edward Nashton was fascinated by puzzles and games from an early age. He was considered one of the smartest men on his Earth and naturally inclined to altruism. He operated as a crimefighter under the moniker "the Quizmaster", eventually becoming a founding member of the Justice Underground.
Why does the observable universe have more matter than antimatter? (more unsolved problems in physics) In physical cosmology , leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe , resulting in the present-day dominance of leptons over ...
The finding of an accelerating universe suggests that a large part of the missing dark matter is stored as dark energy in a dynamical vacuum. [ 6 ] Another question for astroparticle physicists is why is there so much more matter than antimatter in the universe today.