enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...

  3. Tensor representation - Wikipedia

    en.wikipedia.org/wiki/Tensor_representation

    In mathematics, the tensor representations of the general linear group are those that are obtained by taking finitely many tensor products of the fundamental representation and its dual. The irreducible factors of such a representation are also called tensor representations, and can be obtained by applying Schur functors (associated to Young ...

  4. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent . Such networks are commonly depicted in the manner shown at the top of the figure, where f {\displaystyle \textstyle f} is shown as dependent upon itself.

  6. Multilinear algebra - Wikipedia

    en.wikipedia.org/wiki/Multilinear_algebra

    Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.

  7. Category:Tensors - Wikipedia

    en.wikipedia.org/wiki/Category:Tensors

    In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.

  8. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    In mathematics, a monoidal category (or tensor category) is a category equipped with a bifunctor ⊗ : C × C → C {\displaystyle \otimes :\mathbf {C} \times \mathbf {C} \to \mathbf {C} } that is associative up to a natural isomorphism , and an object I that is both a left and right identity for ⊗, again up to a natural isomorphism.

  9. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra.