enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Powers of a number with absolute value less than one tend to zero: b n → 0 as n → ∞ when | b | < 1. Any power of one is always one: b n = 1 for all n for b = 1. Powers of a negative number alternate between positive and negative as n alternates between even and odd, and thus do not tend to any limit as n grows.

  3. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Power(x, −n) = Power(x −1, n), Power(x, −n) = (Power(x, n)) −1. The approach also works in non-commutative semigroups and is often used to compute powers of matrices. More generally, the approach works with positive integer exponents in every magma for which the binary operation is power associative.

  4. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  6. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Digits to the right of it are multiplied by 10 raised to a negative power or exponent. The first position to the right of the separator indicates 101 (0.1), the second position 10 −2 (0.01), and so on for each successive position. As an example, the number 2674 in a base-10 numeral system is: (2 × 10 3) + (6 × 10 2) + (7 × 10 1) + (4 ...

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    We place the numbers in the top row, and fill the left column with values 10. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

  8. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    or m times ten raised to the power of n, where n is an integer, and the coefficient m is a nonzero real number (usually between 1 and 10 in absolute value, and nearly always written as a terminating decimal). The integer n is called the exponent and the real number m is called the significand or mantissa. [1]

  9. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.