enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    the simple first-order rate law described in introductory textbooks. Under these conditions, the concentration of the nucleophile does not affect the rate of the reaction, and changing the nucleophile (e.g. from H 2 O to MeOH) does not affect the reaction rate, though the product is, of course, different. In this regime, the first step ...

  3. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    Entropy of activation determines the preexponential factor A of the Arrhenius equation for temperature dependence of reaction rates. The relationship depends on the molecularity of the reaction: for reactions in solution and unimolecular gas reactions A = (ek B T/h) exp(ΔS ‡ /R), while for bimolecular gas reactions A = (e 2 k B T/h) (RT/p ...

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. Solvent effects - Wikipedia

    en.wikipedia.org/wiki/Solvent_effects

    The case for S N 2 reactions is quite different, as the lack of solvation on the nucleophile increases the rate of an S N 2 reaction. In either case (S N 1 or S N 2), the ability to either stabilize the transition state (S N 1) or destabilize the reactant starting material (S N 2) acts to decrease the ΔG ‡ activation and thereby increase the ...

  6. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    In S N 2 reactions, there are a few conditions that affect the rate of the reaction. First of all, the 2 in S N 2 implies that there are two concentrations of substances that affect the rate of reaction: substrate (Sub) and nucleophile. The rate equation for this reaction would be Rate=k[Sub][Nuc].

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring , Meredith Gwynne Evans and Michael Polanyi .

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that there exists an appreciable number of molecules with translational energy equal to or greater than the activation energy. The term "activation energy" was introduced in 1889 by the Swedish scientist Svante Arrhenius. [3]

  9. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction. A reaction is in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.