Search results
Results from the WOW.Com Content Network
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall). In the case of cdecl, the function name is merely prefixed by an underscore.
In computer science, a mutator method is a method used to control changes to a variable. They are also widely known as setter methods. Often a setter is accompanied by a getter, which returns the value of the private member variable.
Python 3.13 introduces some change in behavior, i.e. new "well-defined semantics", fixing bugs (plus many removals of deprecated classes, functions and methods, and removed some of the C API and outdated modules): "The [old] implementation of locals() and frame.f_locals is slow, inconsistent and buggy [and it] has many corner cases and oddities ...
A function definition starts with the name of the type of value that it returns or void to indicate that it does not return a value. This is followed by the function name, formal arguments in parentheses, and body lines in braces. In C++, a function declared in a class (as non-static) is called a member function or method.
Parameters appear in procedure definitions; arguments appear in procedure calls. In the function definition f(x) = x*x the variable x is a parameter; in the function call f(2) the value 2 is the argument of the function. Loosely, a parameter is a type, and an argument is an instance.
A function call using named parameters differs from a regular function call in that the arguments are passed by associating each one with a parameter name, instead of providing an ordered list of arguments. For example, consider this Java or C# method call that doesn't use named parameters: