enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flamant solution - Wikipedia

    en.wikipedia.org/wiki/Flamant_solution

    Bounded elastic wedge for equilibrium of forces and moments. To get around this problem, we consider a bounded region of the wedge and consider equilibrium of the bounded wedge. [ 3 ] [ 4 ] Let the bounded wedge have two traction free surfaces and a third surface in the form of an arc of a circle with radius a {\displaystyle a\,} .

  3. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...

  4. Exact solutions of classical central-force problems - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_of...

    In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.

  5. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible. Statical indeterminacy, however, is the existence of a non-trivial (non-zero) solution to the homogeneous system of equilibrium equations. It indicates the possibility of self-stress (stress in the absence of an ...

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Solutions to the undamped forced problem have unbounded displacements when the driving frequency matches a natural frequency , i.e., the beam can resonate. The natural frequencies of a beam therefore correspond to the frequencies at which resonance can occur.

  7. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    The two-body problem is solved by formulas involving parameters; their values can be changed to study the class of all solutions, that is, the mathematical structure of the problem. Moreover, an accurate mental or drawn picture can be made for the motion of two bodies, and it can be as real and accurate as the real bodies moving and interacting.

  8. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  9. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The five equilibrium points of the circular problem are known as the Lagrangian points. See figure below: Restricted three-body problem. In the restricted three-body problem math model figure above (after Moulton), the Lagrangian points L 4 and L 5 are where the Trojan planetoids resided (see Lagrangian point); m 1 is the Sun and m 2 is Jupiter.