enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir ...

  3. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.

  4. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s . Note that since the excess force increases as R 3 and Stokes' drag increases as R , the terminal velocity increases as R 2 and thus varies greatly with particle size as shown below.

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Fluid dynamicists define the chord Reynolds number R = Vc/ν, where V is the flight speed, c is the chord length, and ν is the kinematic viscosity of the fluid in which the airfoil operates, which is 1.460 × 10 −5 m 2 /s for the atmosphere at sea level. [19]

  8. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    D H is the hydraulic diameter of the pipe (m); Q is the volumetric flow rate (m 3 /s); A is the pipe's cross-sectional area (m 2); u is the mean speed of the fluid (SI units: m/s); μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); ν is the kinematic viscosity of the fluid, ν = ⁠ μ / ρ ⁠ (m 2 /s); ρ is the density ...

  9. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.