enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Goal programming - Wikipedia

    en.wikipedia.org/wiki/Goal_programming

    Goal programming is used to perform three types of analysis: Determine the required resources to achieve a desired set of objectives. Determine the degree of attainment of the goals with the available resources. Providing the best satisfying solution under a varying amount of resources and priorities of the goals.

  3. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  4. Multi-objective linear programming - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_linear...

    Based on these goals, the set of all efficient (extreme) points can be seen to be the solution of MOLP. This type of solution concept is called decision set based. [3] It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).

  5. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The goal is to maximize the value of the objective function subject to the constraints. A solution is a vector (a list) of n values that achieves the maximum value for the objective function. In the dual problem, the objective function is a linear combination of the m values that are the limits in the m constraints from

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.

  7. Maximum satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_satisfiability_problem

    The MAX-SAT problem is OptP-complete, [1] and thus NP-hard (as a decision problem), since its solution easily leads to the solution of the boolean satisfiability problem, which is NP-complete. It is also difficult to find an approximate solution of the problem, that satisfies a number of clauses within a guaranteed approximation ratio of the ...

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    The following problem classes are all convex optimization problems, or can be reduced to convex optimization problems via simple transformations: [7]: chpt.4 [10] A hierarchy of convex optimization problems. (LP: linear programming, QP: quadratic programming, SOCP second-order cone program, SDP: semidefinite programming, CP: conic optimization.)

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Top-down approach: This is the direct fall-out of the recursive formulation of any problem. If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable ...