Search results
Results from the WOW.Com Content Network
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory , and to illustrate simple set relationships in probability , logic , statistics , linguistics and computer science .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Intersection (set theory) – Set of elements common to all of some sets; Iterated binary operation – Repeated application of an operation to a sequence; List of set identities and relations – Equalities for combinations of sets; Naive set theory – Informal set theories; Symmetric difference – Elements in exactly one of two sets
Just as arithmetic features binary operations on numbers, set theory features binary operations on sets. [9] The following is a partial list of them: Union of the sets A and B, denoted A ∪ B, is the set of all objects that are a member of A, or B, or both. [10] For example, the union of {1, 2, 3} and {2, 3, 4} is the set {1, 2, 3, 4}.
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Venn diagram of = . The symmetric difference is equivalent to the union of both relative complements, that is: [1] = (), The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation: