Search results
Results from the WOW.Com Content Network
Damping capacity is a mechanical property of materials that measure a material's ability to dissipate elastic strain energy during mechanical vibration or wave propagation. When ranked according to damping capacity, materials may be roughly categorized as either high- or low-damping.
The effect of varying damping ratio on a second-order system. The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator ...
The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. [1] It measures the resonant frequencies in order to calculate the Young's modulus , shear modulus , Poisson's ratio and internal friction of predefined shapes like ...
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Different damping ratios produce different SRSs for the same shock waveform. Zero damping will produce a maximum response. Very high damping produces a very boring SRS: A horizontal line. The level of damping is demonstrated by the "quality factor", Q which can also be thought of transmissibility in sinusoidal vibration case.
Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the η {\displaystyle \eta } of viscoelastic materials is between 0 and 2.
The ratio of the loss modulus to storage modulus in a viscoelastic material is defined as the , (cf. loss tangent), which provides a measure of damping in the material. tan δ {\displaystyle \tan \delta } can also be visualized as the tangent of the phase angle ( δ {\displaystyle \delta } ) between the storage and loss modulus.
This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity. Packages such as MATLAB may be used to run simulations of such models. [1] As well as engineering simulation, these systems have applications in computer graphics and computer animation. [2]