Search results
Results from the WOW.Com Content Network
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
The zero-point energy is inversely proportional to the square root of the mass of the vibrating hydrogen atom, and will therefore be smaller for a D–X bond that for an H–X bond. An example is a hydrogen atom abstraction reaction R' + H–R ⇌ R'–H + R with equilibrium constant K H , where R' and R are organic radicals such that R' forms ...
In physical chemistry and chemical engineering, extent of reaction is a quantity that measures the extent to which the reaction has proceeded. Often, it refers specifically to the value of the extent of reaction when equilibrium has been reached.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
When determining the stability constants for ternary complexes, M p A q B r it is common practice the fix the values for the corresponding binary complexes M p′ A q′ and M p′′ B q′′, at values which have been determined in separate experiments. Use of such constraints reduces the number of parameters to be determined, but may result ...
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
The ratio of the mass–action ratio to the equilibrium constant is often called the disequilibrium ratio, denoted by the symbol . ρ = Γ K e q {\displaystyle \rho ={\frac {\Gamma }{K_{eq}}}} and is a useful measure for indicating how far from equilibrium a given reaction is.