Search results
Results from the WOW.Com Content Network
In the central nervous system (brain, spinal cord and optic nerves), myelination is formed by specialized glial cells called oligodendrocytes, each of which sends out processes (limb-like extensions from the cell body) to myelinate multiple nearby axons; while in the peripheral nervous system, myelin is formed by Schwann cells (neurolemmocytes ...
The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1] Oligodendrocytes are found exclusively in the CNS, which comprises the brain and spinal cord.
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.
This schematic illustrates the four different types of glial cells, all of which possess cytoplasmic processes: ependymal cells (light pink), astrocytes (green), microglia (red), and oligodendrocytes (light blue). Cell bodies of neurons are in yellow (Their axons are surrounded by myelin, produced by oligodendrocytes).
They maintain homeostasis, form myelin, and provide support and protection for neurons. [2] In the central nervous system, glial cells include oligodendrocytes (that produce myelin), astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells (that produce myelin), and satellite cells.
The myelin sheath that surrounds and protects nerve cells is made by cells called oligodendrocytes. In a person with MS, these cells are lost, so damaged myelin sheaths cannot be repaired.
In vitro, oligodendrocytes create an extensive network of myelin-like sheets. The process of differentiation can be observed both through morphological changes and cell surface markers specific to the discrete stage of differentiation, though the signals for differentiation are unknown. [ 36 ]
Considering resemblance of myelin organoids to the human brain, they have been proposed as models bridging between animal models and human physiology. [3] Other hPSC derived oligodendrocytes systems have been established, such as the two dimensional (2D) monolayer oligodendrocytes models. [2]