Search results
Results from the WOW.Com Content Network
So, in short: weak duality states that any solution feasible for the dual problem is an upper bound to the solution of the primal problem. Weak duality is in contrast to strong duality, which states that the primal optimal objective and the dual optimal objective are equal. Strong duality only holds in certain cases. [2]
The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.
The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.
Theorem — (sufficiency) If there exists a solution to the primal problem, a solution (,) to the dual problem, such that together they satisfy the KKT conditions, then the problem pair has strong duality, and , (,) is a solution pair to the primal and dual problems.
Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality [note 1] or S-duality according to current terminology. [note 2] It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite" (i.e. they are solitons or topological ...
This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...
Olive, Honey and Brie with a swig of Chardonnay. Not only a yummy appetizer, but inspiration for baby names that are influenced by food and drink.
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.