enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    However, when discriminant analysis’ assumptions are met, it is more powerful than logistic regression. [36] Unlike logistic regression, discriminant analysis can be used with small sample sizes. It has been shown that when sample sizes are equal, and homogeneity of variance/covariance holds, discriminant analysis is more accurate. [8]

  3. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    During the process of extracting the discriminative features prior to the clustering, Principal component analysis (PCA), though commonly used, is not a necessarily discriminative approach. In contrast, LDA is a discriminative one. [9] Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above ...

  4. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  5. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Despite the fact that discriminative models do not need to model the distribution of the observed variables, they cannot generally express complex relationships between the observed and target variables. But in general, they don't necessarily perform better than generative models at classification and regression tasks. The two classes are seen ...

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  7. Optimal discriminant analysis and classification tree ...

    en.wikipedia.org/wiki/Optimal_discriminant...

    Optimal discriminant analysis may be applied to > 0 dimensions, with the one-dimensional case being referred to as UniODA and the multidimensional case being referred to as MultiODA. Optimal discriminant analysis is an alternative to ANOVA (analysis of variance) and regression analysis.

  8. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    In discrete choice theory, where instances represent people and categories represent choices, the score is considered the utility associated with person i choosing category k. Algorithms with this basic setup are known as linear classifiers. What distinguishes them is the procedure for determining (training) the optimal weights/coefficients and ...

  9. Mathematical statistics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_statistics

    In statistics, regression analysis is a statistical process for estimating the relationships among variables. It includes many ways for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables .