enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in probably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.

  5. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  6. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    The advantage of the penalty method is that, once we have a penalized objective with no constraints, we can use any unconstrained optimization method to solve it. The disadvantage is that, as the penalty coefficient p grows, the unconstrained problem becomes ill-conditioned - the coefficients are very large, and this may cause numeric errors ...

  7. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For the definitions below, we first present the linear program in the so-called equational form: . maximize subject to = and . where: and are vectors of size n (the number of variables);

  8. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Then, for each subproblem i, it performs the following steps. Compute the optimal solution to the linear programming relaxation of the current subproblem. That is, for each variable x j in V i , we replace the constraint that x j be 0 or 1 by the relaxed constraint that it be in the interval [0,1]; however, variables that have already been ...