Search results
Results from the WOW.Com Content Network
HAVAL is a cryptographic hash function. Unlike MD5, but like most modern cryptographic hash functions, HAVAL can produce hashes of different lengths – 128 bits, 160 bits, 192 bits, 224 bits, and 256 bits. HAVAL also allows users to specify the number of rounds (3, 4, or 5) to be used to generate the hash. HAVAL was broken in 2004. [1]
BLAKE repeatedly combines an 8-word hash value with 16 message words, truncating the ChaCha result to obtain the next hash value. BLAKE-256 and BLAKE-224 use 32-bit words and produce digest sizes of 256 bits and 224 bits, respectively, while BLAKE-512 and BLAKE-384 use 64-bit words and produce digest sizes of 512 bits and 384 bits, respectively.
Fowler–Noll–Vo (or FNV) is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo.. The basis of the FNV hash algorithm was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo in 1991.
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
The MD5 message-digest algorithm is a widely used hash function producing a 128-bit hash value. MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function MD4, [3] and was specified in 1992 as RFC 1321. MD5 can be used as a checksum to verify data integrity against unintentional corruption.
A hash function is any function that can be used to map data of arbitrary size to fixed-size values, though there are some hash functions that support variable-length output. [1] The values returned by a hash function are called hash values, hash codes, hash digests, digests, or simply hashes. [2]
In cryptography, SHA-1 (Secure Hash Algorithm 1) is a hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as 40 hexadecimal digits. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. [3]