Search results
Results from the WOW.Com Content Network
Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
As a vector, jerk j can be expressed as the first time derivative of acceleration, second time derivative of velocity, and third time derivative of position: = = = ()Where:
In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...
Stated formally, in general, an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = dr / dt ), and its acceleration (the second derivative of r, a = d 2 r / dt 2 ), and time t. Euclidean vectors in 3D are denoted throughout in bold.
For example, for a changing position, its time derivative ˙ is its velocity, and its second derivative with respect to time, ¨, is its acceleration. Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk .
Velocity is the speed in combination ... velocity is measured in metres per second ... instantaneous acceleration is defined as the derivative of velocity with ...
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.