Search results
Results from the WOW.Com Content Network
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
2 Example. 3 Applications. ... in the Taylor series of a function of w. ... The Lambert W function is the function () that is implicitly ...
Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).
There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease ...
Function () = =, represented as a Matplotlib plot, using a version of the domain coloring method [1]. In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
It is the value of W(1), where W is Lambert's W function. The name is derived from the alternate name for Lambert's W function, the omega function. The numerical value of Ω is given by Ω = 0.56714 32904 09783 87299 99686 62210... (sequence A030178 in the OEIS). 1/Ω = 1.76322 28343 51896 71022 52017 76951... (sequence A030797 in the OEIS).