Search results
Results from the WOW.Com Content Network
C 4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. [1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation.
Maize (Zea mays, Poaceae) is the most widely cultivated C 4 plant.[1]In botany, C 4 carbon fixation is one of three known methods of photosynthesis used by plants. C 4 plants increase their photosynthetic efficiency by reducing or suppressing photorespiration, which mainly occurs under low atmospheric CO 2 concentration, high light, high temperature, drought, and salinity.
This process alone is similar to that of C4 plants and yields characteristic C4 fractionation values of approximately -11‰. [6] However, in the afternoon, CAM plants may open their stomata and perform C3 photosynthesis. [6] In daytime alone, CAM plants have approximately -28‰ fractionation, characteristic of C3 plants. [6]
Cyanobacteria such as these carry out photosynthesis. Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.
C 4 plants use the enzyme PEP carboxylase initially, which has a higher affinity for CO 2. The process first makes a 4-carbon intermediate compound, hence the name C 4 plants, which is shuttled into a site of C 3 photosynthesis then decarboxylated, releasing CO 2 to boost the concentration of CO 2.
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
To address this, the 467 Mb genome of S. aralocaspica has been sequenced to help understanding of the evolution of SCC 4 photosynthesis and contribute to the engineering of C 4 photosynthesis into other economically important crops. [2] It is monoecious, annual and grows to a height of between 20 and 50 cm (7.9–19.7 in). It flowers in August ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.