Search results
Results from the WOW.Com Content Network
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
The reference spectrum in ASTM G177 is limited to the global irradiance in the ultraviolet (280–400 nm), and corresponds to "high-UV" conditions frequently encountered in arid and elevated sites, such as in the southwest USA. This spectrum is to be used as a reference for testing the degradation and durability of materials.
The global irradiance on a horizontal surface on Earth consists of the direct irradiance E e,dir and diffuse irradiance E e,diff. On a tilted plane, there is another irradiance component, E e,refl, which is the component that is reflected from the ground. The average ground reflection is about 20% of the global irradiance.
For propagation of light in a vacuum, the definition of specific (radiative) intensity implicitly allows for the inverse square law of radiative propagation. [12] [14] The concept of specific (radiative) intensity of a source at the point P 1 presumes that the destination detector at the point P 2 has optical devices (telescopic lenses and so forth) that can resolve the details of the source ...
Solar irradiance spectrum above atmosphere and at surface. The overall intensity of solar radiation is like that of a black body radiator of the same size at about 5,800 K. [1] As it passes through the atmosphere, sunlight is attenuated by scattering and absorption; the more atmosphere through which it passes, the greater the attenuation.
The plot for vapor is a transformation of data Synthetic spectrum for gas mixture ' Pure H 2 O ' (296K, 1 atm) retrieved from Hitran on the Web Information System. [6] Liquid water absorption spectrum across a wide wavelength range [missing source] The absorption of electromagnetic radiation by water depends on the state of the water.
The field of spectroradiometry concerns itself with the measurement of absolute radiometric quantities in narrow wavelength intervals. [1] It is useful to sample the spectrum with narrow bandwidth and wavelength increments because many sources have line structures [2] Most often in spectroradiometry, spectral irradiance is the desired measurement.
The windows are themselves dependent upon clouds, water vapor, trace greenhouse gases, and other components of the atmosphere. [ 8 ] Out of an average 340 watts per square meter (W/m 2 ) of solar irradiance at the top of the atmosphere, about 200 W/m 2 reaches the surface via windows, mostly the optical and infrared.