Search results
Results from the WOW.Com Content Network
Pinacolborane is the borane with the formula (CH 3) 4 C 2 O 2 BH. Often pinacolborane is abbreviated HBpin. [1] It features a boron hydride functional group incorporated in a five-membered C 2 O 2 B ring. Like related boron alkoxides, pinacolborane is monomeric. It is a colorless liquid. [2] It features a reactive B-H functional group. [3]
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction .
The reaction is named after pinacol (also known as 2,3-dimethyl-2,3-butanediol or tetramethylethylene glycol), which is the product of this reaction when done with acetone as reagent. The reaction is usually a homocoupling but intramolecular cross-coupling reactions are also possible. Pinacol was discovered by Wilhelm Rudolph Fittig in 1859.
Trimethyl borate is a popular borate ester used in organic synthesis. Borate esters form spontaneously when treated with diols such as sugars and the reaction with mannitol forms the basis of a titrimetric analytical method for boric acid. Metaborate esters show considerable Lewis acidity and can initiate epoxide polymerization reactions. [4]
The lower rim of the cyclooctane B ring containing the first 5 carbon atoms was synthesized in a semisynthesis starting from naturally occurring L-serine (scheme 1).This route started with conversion of the amino group of the serine methyl ester (1) to the diol ester 2 via diazotization (sodium nitrite/sulfuric acid).
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
[1] [2] The name "Schotten–Baumann reaction conditions" often indicate the use of a two-phase solvent system, consisting of water and an organic solvent. The base within the water phase neutralizes the acid, generated in the reaction, while the starting materials and product remain in the organic phase, often dichloromethane or diethyl ether.