Search results
Results from the WOW.Com Content Network
The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.
The Frenet–Serret formulas show that there is a pair of functions defined on the curve, the torsion and curvature, which are obtained by differentiating the frame, and which describe completely how the frame evolves in time along the curve. A key feature of the general method is that a preferred moving frame, provided it can be found, gives a ...
An illustration of the Frenet frame for a point on a space curve. T is the unit tangent, P the unit normal, and B the unit binormal. A Frenet frame is a moving reference frame of n orthonormal vectors e i (t) which are used to describe a curve locally at each point γ(t). It is the main tool in the differential geometric treatment of curves ...
Frenet–Serret formulas; Curves in differential geometry; Line element; Curvature; Radius of curvature; ... Examples hyperbolic space; Gauss–Bolyai–Lobachevsky ...
For example, they are coefficients in the system of differential equations for the Frenet frame given by the Frenet–Serret formulas. Definition
The speed in the formula is squared, so twice the speed needs four times the force, at a given radius. This force is also sometimes written in terms of the angular velocity ω of the object about the center of the circle, related to the tangential velocity by the formula v = ω r {\displaystyle v=\omega r} so that F c = m r ω 2 ...
A space curve, Frenet–Serret frame, and the osculating plane (spanned by T and N). In mathematics, particularly in differential geometry, an osculating plane is a plane in a Euclidean space or affine space which meets a submanifold at a point in such a way as to have a second order of contact at the point.
Several examples of adapted frames have already been considered. The first vector T of the Frenet–Serret frame (T, N, B) is tangent to a curve, and all three vectors are mutually orthonormal. Similarly, the Darboux frame on a surface is an orthonormal frame whose first two vectors are tangent to the surface.