enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

  3. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    For any convex polygon, all the diagonals are inside the polygon, but for re-entrant polygons, some diagonals are outside of the polygon. Any n -sided polygon ( n ≥ 3), convex or concave , has n ( n − 3 ) 2 {\displaystyle {\tfrac {n(n-3)}{2}}} total diagonals, as each vertex has diagonals to all other vertices except itself and the two ...

  4. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Regular convex and star polygons with 3 to 12 vertices labelled with their Schläfli symbols. These properties apply to all regular polygons, whether convex or star: A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e

  5. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The two diagonals and the two tangency chords are concurrent. [11] [10]: p.11 One way to see this is as a limiting case of Brianchon's theorem, which states that a hexagon all of whose sides are tangent to a single conic section has three diagonals that meet at a point. From a tangential quadrilateral, one can form a hexagon with two 180 ...

  6. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics , where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    When an equidiagonal kite has side lengths less than or equal to its diagonals, like this one or the square, it is one of the quadrilaterals with the greatest ratio of area to diameter. [21] A kite with three 108° angles and one 36° angle forms the convex hull of the lute of Pythagoras, a fractal made of nested pentagrams. [22]

  8. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The diagonals of an isosceles trapezoid have the same length; that is, every isosceles trapezoid is an equidiagonal quadrilateral. Moreover, the diagonals divide each other in the same proportions. As pictured, the diagonals AC and BD have the same length (AC = BD) and divide each other into segments of the same length (AE = DE and BE = CE).

  9. Harmonic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Harmonic_quadrilateral

    [2] [3] Angles ∠BMC and ∠DMC are equal. The bisectors of the angles at B and D intersect on the diagonal AC. A diagonal BD of the quadrilateral is a symmedian of the angles at B and D in the triangles ∆ ABC and ∆ ADC.