enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive linear functional - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_functional

    The significance of positive linear functionals lies in results such as Riesz–Markov–Kakutani representation theorem. When V {\displaystyle V} is a complex vector space, it is assumed that for all v ≥ 0 , {\displaystyle v\geq 0,} f ( v ) {\displaystyle f(v)} is real.

  3. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    Any positive linear functionals on dominated by is of the form = (), for some positive operator in () ′ with in the operator order. This is a version of the Radon–Nikodym theorem . For such g {\displaystyle g} , one can write f {\displaystyle f} as a sum of positive linear functionals: f = g + g ′ {\displaystyle f=g+g'} .

  4. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    A proof can be sketched as follows: Let be the weak*-compact set of positive linear functionals on with norm ≤ 1, and () be the continuous functions on . A {\displaystyle A} can be viewed as a closed linear subspace of C ( Ω ) {\displaystyle C(\Omega )} (this is Kadison 's function representation ).

  5. Order dual (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Order_dual_(functional...

    In mathematics, specifically in order theory and functional analysis, the order dual of an ordered vector space is the set ⁡ ⁡ where ⁡ denotes the set of all positive linear functionals on , where a linear function on is called positive if for all , implies () [1] The order dual of is denoted by +.

  6. Linear form - Wikipedia

    en.wikipedia.org/wiki/Linear_form

    Continuous linear functionals have nice properties for analysis: a linear functional is continuous if and only if its kernel is closed, [14] and a non-trivial continuous linear functional is an open map, even if the (topological) vector space is not complete.

  7. Positive linear operator - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_operator

    A linear function on a preordered vector space is called positive if it satisfies either of the following equivalent conditions: . implies (); if then () (). [1]; The set of all positive linear forms on a vector space with positive cone , called the dual cone and denoted by , is a cone equal to the polar of .

  8. Riesz–Markov–Kakutani representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz–Markov–Kakutani...

    There are many closely related variations of the theorem, as the linear functionals can be complex, real, or positive, the space they are defined on may be the unit interval or a compact space or a locally compact space, the continuous functions may be vanishing at infinity or have compact support, and the measures can be Baire measures or ...

  9. Radon measure - Wikipedia

    en.wikipedia.org/wiki/Radon_measure

    Conversely, by the Riesz–Markov–Kakutani representation theorem, each positive linear form on K (X) arises as integration with respect to a unique regular Borel measure. A real-valued Radon measure is defined to be any continuous linear form on K ( X ) ; they are precisely the differences of two Radon measures.