enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    Allosteric enzymes need not be oligomers as previously thought, [1] and in fact many systems have demonstrated allostery within single enzymes. [2] In biochemistry , allosteric regulation (or allosteric control ) is the regulation of a protein by binding an effector molecule at a site other than the enzyme's active site .

  3. Allosteric regulation - Wikipedia

    en.wikipedia.org/wiki/Allosteric_regulation

    Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.

  4. Regulatory enzyme - Wikipedia

    en.wikipedia.org/wiki/Regulatory_enzyme

    In a) the allosteric enzyme functions normally. In b), it is inhibited. This type of enzymes presents two binding sites: the substrate of the enzyme and the effectors. Effectors are small molecules which modulate the enzyme activity; they function through reversible, non-covalent binding of a regulatory metabolite in the allosteric site (which ...

  5. Phosphofructokinase 1 - Wikipedia

    en.wikipedia.org/wiki/Phosphofructokinase_1

    Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes (EC 2.7.1.11) of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ...

  6. Fatty acid synthesis - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_synthesis

    In contrast, the human body stores only about 400 g (0.9 lb) of glycogen, of which 300 g (0.7 lb) is locked inside the skeletal muscles and is unavailable to the body as a whole. The 100 g (0.2 lb) or so of glycogen stored in the liver is depleted within one day of starvation. [ 11 ]

  7. Kinase - Wikipedia

    en.wikipedia.org/wiki/Kinase

    Hexokinase is the most common enzyme that makes use of glucose when it first enters the cell. It converts D-glucose to glucose-6-phosphate by transferring the gamma phosphate of an ATP to the C6 position. This is an important step in glycolysis because it traps glucose inside the cell due to the negative charge.

  8. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    Glucose-6-phosphate dehydrogenase is the rate-controlling enzyme of this pathway [citation needed]. It is allosterically stimulated by NADP + and strongly inhibited by NADPH. [7] The ratio of NADPH:NADP + is the primary mode of regulation for the enzyme and is normally about 100:1 in liver cytosol [citation needed]. This makes the cytosol a ...

  9. Malate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Malate_dehydrogenase

    Because malate dehydrogenase is closely tied to the citric acid cycle, studies have proposed and experimentally demonstrated that citrate is an allosteric regulator of malate dehydrogenase depending on the concentrations of L-malate and NAD +. This may be due to deviations observed in the kinetic behavior of malate dehydrogenase at high ...