Search results
Results from the WOW.Com Content Network
Hydrogen–deuterium exchange (also called H–D or H/D exchange) is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any ...
In the case of hydrogen, larger differences in chemical properties among protium, deuterium, and tritium occur because chemical bond energy depends on the reduced mass of the nucleus–electron system; this is altered in heavy-hydrogen compounds (hydrogen-deuterium oxide is the most common) more than for heavy-isotope substitution involving ...
Deuterium (hydrogen-2, symbol 2 H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, 1 H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more common 1 H has no neutrons. The name deuterium comes from Greek deuteros, meaning "second".
Hydrogen deuteride is a minor component of naturally occurring molecular hydrogen. It is one of the minor but noticeable components of the atmospheres of all the giant planets , with abundances from about 30 ppm to about 200 ppm.
Deuterated acetone ((CD 3) 2 CO), also known as acetone-d 6, is a form (isotopologue) of acetone (CH 3) 2 CO in which the hydrogen atom (H) is replaced with deuterium (heavy hydrogen) isotope (2 H or D). Deuterated acetone is a common solvent used in NMR spectroscopy. [1]
Semiheavy water is the result of replacing one of the protium (normal hydrogen, 1 H) in normal water with deuterium (2 H; or less correctly, [1] D). [2] It exists whenever there is water with 1 H and 2 H in the mix. This is because hydrogen atoms (1,2 H) are rapidly exchanged between water molecules.
NMR spectroscopy is nucleus specific. Thus, it can distinguish between hydrogen and deuterium. The amide protons in the protein exchange readily with the solvent, and, if the solvent contains a different isotope, typically deuterium, the reaction can be monitored by NMR spectroscopy. How rapidly a given amide exchanges reflects its solvent ...
Almost all the organic hydrogen is exchangeable to some extent. Isotopic exchange of organic hydrogen will reorder the distribution of deuterium and often incorporate external hydrogen. Generally, more mature materials are more heavily exchanged. With effective exchange, aliphatic hydrogen can finally reach isotopic equilibrium at the final stage.