enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrophobicity scales - Wikipedia

    en.wikipedia.org/wiki/Hydrophobicity_scales

    Also, amino acid side chain affinity for water was measured using vapor phases. [14] Vapor phases represent the simplest non polar phases, because it has no interaction with the solute. [18] The hydration potential and its correlation to the appearance of amino acids on the surface of proteins was studied by Wolfenden.

  3. Hydrophilicity plot - Wikipedia

    en.wikipedia.org/wiki/Hydrophilicity_plot

    There are a number of methods to measure the degree of interaction of polar solvents such as water with specific amino acids. For instance, the Kyte-Doolittle scale indicates hydrophobic amino acids, whereas the Hopp-Woods scale measures hydrophilic residues. Analyzing the shape of the plot gives information about partial structure of the protein.

  4. Hydrophobic-polar protein folding model - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic-polar_protein...

    The hydrophobic-polar protein folding model is a highly simplified model for examining protein folds in space. First proposed by Ken Dill in 1985, it is the most known type of lattice protein: it stems from the observation that hydrophobic interactions between amino acid residues are the driving force for proteins folding into their native state. [1]

  5. Hopp–Woods scale - Wikipedia

    en.wikipedia.org/wiki/Hopp–Woods_scale

    The Hopp–Woods hydrophilicity scale of amino acids is a method of ranking the amino acids in a protein according to their water solubility in order to search for surface locations on proteins, and especially those locations that tend to form strong interactions with other macromolecules such as proteins, DNA, and RNA.

  6. Hydrophobic effect - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic_effect

    The hydrophobic effect depends on the temperature, which leads to "cold denaturation" of proteins. [19] The hydrophobic effect can be calculated by comparing the free energy of solvation with bulk water. In this way, the hydrophobic effect not only can be localized but also decomposed into enthalpic and entropic contributions. [3]

  7. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  8. Folding funnel - Wikipedia

    en.wikipedia.org/wiki/Folding_funnel

    The folding funnel hypothesis is closely related to the hydrophobic collapse hypothesis, under which the driving force for protein folding is the stabilization associated with the sequestration of hydrophobic amino acid side chains in the interior of the folded protein. This allows the water solvent to maximize its entropy, lowering the total ...

  9. Protein precipitation - Wikipedia

    en.wikipedia.org/wiki/Protein_Precipitation

    Hydrophobic residues predominantly occur in the globular protein core, but some exist in patches on the surface. Proteins that have high hydrophobic amino acid content on the surface have low solubility in an aqueous solvent. Charged and polar surface residues interact with ionic groups in the solvent and increase the solubility of a protein.