enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  5. Yuri Matiyasevich - Wikipedia

    en.wikipedia.org/wiki/Yuri_Matiyasevich

    In 1972, at the age of 25, he defended his doctoral dissertation on the unsolvability of Hilbert's tenth problem. [ 7 ] From 1974 Matiyasevich worked in scientific positions at LOMI, first as a senior researcher, in 1980 he headed the Laboratory of Mathematical Logic.

  6. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.

  7. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Franzén (2005) explains how Matiyasevich's solution to Hilbert's 10th problem can be used to obtain a proof to Gödel's first incompleteness theorem. [11] Matiyasevich proved that there is no algorithm that, given a multivariate polynomial p(x 1, x 2,...,x k) with integer coefficients, determines whether there is an integer solution to the ...

  8. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, [1] was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies.

  9. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    The use of "Hilbert-style" and similar terms to describe axiomatic proof systems in logic is due to the influence of Hilbert and Ackermann's Principles of Mathematical Logic (1928). [2] Most variants of Hilbert systems take a characteristic tack in the way they balance a trade-off between logical axioms and rules of inference.