Search results
Results from the WOW.Com Content Network
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...
The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.
A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime numbers. This was Hilbert's eighth problem, and is still considered an important open problem a century later. The problem has been well-known ever since it was originally posed by Bernhard Riemann in 1860.
Matiyasevich's theorem, also called the Matiyasevich–Robinson–Davis–Putnam or MRDP theorem, says: . Every computably enumerable set is Diophantine, and the converse.. A set S of integers is computably enumerable if there is an algorithm such that: For each integer input n, if n is a member of S, then the algorithm eventually halts; otherwise it runs forever.
On the one hand, CH implies that there exists a function on the unit square whose iterated integrals are not equal — the function is simply the indicator function of an ordering of [0, 1] equivalent to a well ordering of the cardinal ω 1. A similar example can be constructed using MA.
The use of "Hilbert-style" and similar terms to describe axiomatic proof systems in logic is due to the influence of Hilbert and Ackermann's Principles of Mathematical Logic (1928). [2] Most variants of Hilbert systems take a characteristic tack in the way they balance a trade-off between logical axioms and rules of inference.
1970: Hilbert's tenth problem is proven unsolvable: there is no recursive solution to decide whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. 1971: Suslin's problem is proven to be independent from ZFC.