enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too. The tangent lines to the graph of a cubic function at three collinear points intercept the cubic again at collinear points. [4] This can be seen as follows.

  3. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.

  5. Signed area - Wikipedia

    en.wikipedia.org/wiki/Signed_area

    The blue area above the x-axis may be specified as positive area, while the yellow area below the x-axis is the negative area. The integral of a real function can be imagined as the signed area between the x {\displaystyle x} -axis and the curve y = f ( x ) {\displaystyle y=f(x)} over an interval [ a , b ].

  6. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y ( x ) = 7 x 3 – 8 x 2 – 3 x + 3 , the 2-point Gaussian quadrature rule even returns an exact result.

  7. Quadrant (plane geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrant_(plane_geometry)

    The expression reads "All Science Teachers Crazy" and proceeding counterclockwise from the upper right quadrant, we see that "All" functions are positive in quadrant I, "Science" (for sine) is positive in quadrant II, "Teachers" (for tangent) is positive in quadrant III, and "Crazy" (for cosine) is positive in quadrant IV.

  8. Superellipse - Wikipedia

    en.wikipedia.org/wiki/Superellipse

    When n is a positive rational number / (in lowest terms), then each quadrant of the superellipse is a plane algebraic curve of order /. [5] In particular, when a = b = 1 {\displaystyle a=b=1} and n is an even integer, then it is a Fermat curve of degree n .

  9. Quadtree - Wikipedia

    en.wikipedia.org/wiki/Quadtree

    The point quadtree [3] is an adaptation of a binary tree used to represent two-dimensional point data. It shares the features of all quadtrees but is a true tree as the center of a subdivision is always on a point. It is often very efficient in comparing two-dimensional, ordered data points, usually operating in O(log n) time.